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Introduction

VRR, or Virtual Ring Routing, is a network routing protocol with a fresh design. It is 
inspired by overlay routing algorithms using Distributed Hash Tables, but instead of being 
built at the application layer, it is a routing protocol implemented directly on top of the link 
layer. VRR provides both traditional end-to-end routing, and DHT key-access functionalities. 
It  performs  well  across  a  wide  range  of  network  environments  and  workloads,  but  is 
especially intended for routing in mesh wireless dynamic ad hoc networks, or disaster relief 
networks and such: indeed, it is scalable, robust, and does not need external setup servers.

VRR has been designed and developed in collaboration with the Microsoft Research 
team, and its reference implementation has been released in September 2006, for the Windows 
XP operating  system.  It  is  distributed  through  a  shared  source  agreement.  The  Network 
Research Lab in UCLA has been experimenting in VANETs, and they consider using VRR on 
virtualized environments onboard cars. As a term project in the Fall Quarter, I was initially 
given the task of working on a port of this code to the GNU/Linux environment [3].

Since then, I  have gone on further working on VRR, on design and implementation 
issues. In particular, as a term project in the Winter Quarter, I designed multicast extensions to 
the VRR protocol [4]. This document summarizes and presents a review of all my work, as a 
M.S. Comprehensive report.

I. Protocol design  

1. Main features  

After having worked for some time with this protocol, it appears to me that the most 
striking features of VRR are:

- the  distribution  of  routing  information  over  the  network,  in  the  face  of  the 
requirements of routing

- symmetric failure detection, and more generally,
- the hard-state of the protocol, and the fact that it does not flood the network to 

acquire routing information

In VRR, each node is identified by a so-called virtual address, and these addresses are 
sorted on a virtual ring: identifiers are called virtual in distinction from the physical topology, 
of which they are independent.  Each node holds  some partial  routing information,  which 
comprises routes toward several endpoints. When forwarding a packet, the node uses the next 
hop  of  the  route  whose  endpoint’s  address  is  numerically  the  closest  to  the  destination 
address. Depending on the routing information that the forwarding node holds, the next hop 
may not be the most accurate with respect to the physical topology.
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However, in order to achieve routing, each node is responsible for maintaining routing 
information to a set of a few nodes which are numerically closest on the virtual ring: this set 
of virtual neighbors is called the virtual set. Through one-time exchanges of Setup messages 
with their virtual set, virtual neighbors set up routing information all along the paths between 
them. This information is torn down when a failure occurs, and set up again by the virtual 
neighbors. Thus, by routing according to the virtual ring topology, VRR can rely on routing 
information within virtual sets, truly distributed over the ring: this is a key to the scalability of 
VRR.

One may imagine that, in order to detect failures, virtual neighbors exchange some 
kind of end-to-end heartbeat messages: this is not the case, as the protocol is essentially hard-
state, which means that routing information is not periodically refreshed, and then passively 
removed when its lifetime expires, but instead, once acquired, is kept valid until an active 
contrary  update  is  received.  In  such  a  distributed  environment,  the  main  point  where 
consistency can be achieved is the local environment of a node. VRR nodes broadcast Hello 
beacons, to detect and track the state of their neighbors in the physical topology. These Hello 
messages are coupled to state machines: the state transitions ensures that if a node detects that 
a link with one of its neighbors is failing, both sides will detect and report the failure, and 
consistency will  be preserved. Routing information establishing paths between two virtual 
neighbors  that  pass  by  the  failing  link  can  then  be  removed,  by forwarding  Tear  Down 
messages along the paths, toward both endpoints, to report the failure in a reliable way.

State transitions when a Hello message is received

Distributed information and hard-state are indeed a quite beneficial combination. A 
third element, depending on the context of the use of VRR, can be added.

VRR is not really intended for global routing, like the Internet Protocol, but rather for 
use within an organization, with a pre-arranged configuration. Moreover,  the principles of 
VRR  are  to  use  neither  flooding  of  information,  nor  external  reference  servers.  In  this 
situation, to retrieve some piece of information on a VRR network, user-level applications can 
be arranged to take advantage of Dynamic Hash Table functionalities, inherently supported by 
the virtual ring structure of VRR. With the use of pre-deployed DHT applications on the 
nodes  composing  the  network,  VRR  can  be  extended  to  further  distribute  user-level 
information on the ring.
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As addressed in [2], this scheme can be used to operate autoconfiguration protocols 
like DHCP, or resolution protocols like DNS or ARP for IPv4: as said before, it allows VRR 
networks to run  in the absence of a support infrastructure, for example in a disaster relief 
scenario,  and without the poor performance implied by broadcasting requests through the 
network.

Indeed,  the reference implementation of  the VRR stack provides applications with 
extra mechanisms to easily access  DHTs on the VRR network,  and is  shipped with such 
applications implementing ARP, DNS and DHCP. Though VRR really is a network protocol, 
standing directly on top of the link layer, the VRR network is exported as an overlay link 
layer, accessible through an Ethernet-like device, on which IPv4 and IPv6 stacks can be run 
transparently. As the idea behind VRR is never to broadcast a request through the ring, in 
order  to  mimic  the  behavior  of  a  link  layer,  the  VRR driver  will  in  particular  intercept 
broadcast ARP requests, and redirect them to user-space for DHT applications to handle them, 
as mentioned above. This means that VRR does not really need to support real broadcast or 
multicast to operate in normal conditions, and in fact, it does not support them at all.

However, this is still a limitation. In cases where broadcast is used to query a unique, 
yet unknown, node on the network, it can be replaced by DHT applications. But when the 
purpose is to transmit the same data to several or all nodes at the same time in an efficient 
way, broadcast and multicast are still missing. This problem has been the motivation of my 
work on the design of broadcast and multicast extensions to VRR.

2. Multicast extensions  

When working on these multicast  extensions,  I  essentially tried to conform to the 
design goals and decisions of the existing VRR, and take advantage of its particular features, 
to produce a scheme that was consistent with the original protocol: something scalable, hard-
state, and that did not require flooding of information.

Among the classic ways of doing multicast, one approach was particularly suited to 
this case: like in PIM [5], to use a rendezvous point (RVP), and then rely on existing unicast 
routing. Indeed, for streaming sources and group members to contact each other, they need 
either  to  flood the  network  toward  each other,  or  to  meet  at  a  RVP:  on VRR,  the  DHT 
functionalities  can  easily  be  taken  advantage  of  to  implement  RVPs  and  store  group 
membership information in a distributed way. Then, as for multicast forwarding, each node 
holds  only  partial  routing  information,  which  is  not  enough  to  coordinate  efficient 
multicasting by itself; however, existing unicast VRR routes can be used to forward messages, 
for example from a member toward a source, and set up a forwarding tree along the path.

This  is  a two-step process,  where first  the RVP is contacted to notify it  and fetch 
existing  group  information,  and  then  messages  are  sent  to  build  a  distribution  tree.  For 
scalability reasons, it is better if both endpoint types, that is, both sources and members, can 
initiate this process. Thus, I designed two additional VRR option types with several subtypes 
corresponding to those messages:

1. Multicast Membership messages
Register, Members and Withdraw messages between a source and a RVP
Join, Sources and Leave messages between a member and a RVP
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2. Multicast Tree messages
Seed and Fell messages from a source toward members
Branch and Prune message from members toward the source

Subsequently, for each multicast group and source pair, each node holds an entry in a 
multicast forwarding table, which consists only of a list of next hops to which packets must be 
forwarded: since the information kept at each node is relatively small, the scheme is scalable. 
This information is kept in hard-state: existing symmetric failure detection is used to detect 
failures, and repair the tree.

I  found  that  this  scheme  is  not  exempt  of  synchronization  issues.  Essentially, 
consistency can be achieved only at two points: at the RVP, and in the local environment of 
each node. The RVP can easily be used as a reference point, where membership information is 
kept in a coherent state. In fact, the only serious problem with possible race conditions is 
when two neighbors along a tree exchange opposite messages at the same time: a branch of 
the tree could be orphaned by its parent without knowing it, and fail to receive packets. This 
problem can be solved through the use of sequence numbers for Multicast Tree messages, to 
acknowledge  or  retransmit,  and  order  those  messages,  and  then  apply  a  few  simple 
synchronization rules to eliminate harmful race conditions.

To complete the review of this design, I treated the broadcast case as a special case of 
multicast, where all nodes are implicitly members of the group. In the end, this scheme is 
interesting and seems feasible, though at the moment it is only partially implemented, and 
neither really tested nor evaluated.

II. The   Microsoft Research reference VRR implementation  

During  my work  on  VRR,  my basis  was  essentially  the  code  source  itself  of  the 
reference implementation from Microsoft Research. Thus, I have come to some observations 
about it that I will expose here.

1. Overview  

This implementation  was  released  in  September  2006,  under  the  version  number 
Release  1.0.  This  is  an  experimental  kernel-mode  driver  for  Windows  XP.  The  release 
contains the source code and binaries of the driver itself, and also of C# user-level libraries 
and  applications.  It  is  distributed  under  a  Microsoft  Research  Shared  Source  License 
Agreement (MSR-SSLA). The key points of this agreement are:

- A license for non-commercial use
- Distribution of derivative works is authorized only under the same terms.
- Upon  distribution  of  derivative  works,  Microsoft  is  granted  back  a  free  non-

exclusive full license on them.

6



The driver code itself amounts to approximately 30000 lines of code, written in C. It is 
shipped  with  installation  and  start-up  guides,  but  no  real  general  driver  overview 
documentation, such as a developer  README  file. The two VRR papers [1] and [2] are the 
only extra documents helping to understand the driver.

Fortunately, the code itself is quite well commented. At first, I was quite pleased by 
the external appearance of the code, which looked well-written, clearly commented and using 
good coding styles. But after working more in depth with the internals of the stack, I became 
quite disappointed by its quality. There are a number of points on which great improvements 
could be made: though it is experimental, the code does not meet the quality standards that I 
would have expected for a release, and, in my opinion, would rather qualify as pre-release 
stage code.

2. Lack of clean-ups  

Indeed, when reading through the code, it is not rare to come across comments like 
“TODO: clean this up” or “TODO: do this in a better way.” Also, obviously, the stack makes 
intensive  re-use  of  code  from  the  Microsoft  Research  Mesh  Connectivity  Layer,  and 
especially the Link-Quality Source Routing (LQSR) stack: in itself, this code re-use is not a 
bad thing, but it contributes to explain the state of the code. The most pervasive example is 
the struct used to internally represent a VRR packet: it is called SRPacket, for Source Routed 
Packet, whereas VRR has really nothing to do with source routing. Beyond simple naming 
questions, other examples of things that could have been cleaned up before the release are:

- Flags describing VRR node states, that are defined in the headers but never used in 
the code

- Variables declared in functions, but never used, that are easily caught by turning on 
compiler warnings

- Old LQSR definitions, still present in the code, and marked as “to be cleared”
- Not only debug output, which is fine, but debug logic still present in the code
- Duplicate code, sometimes nearly whole functions; at other times, on the opposite, 

helper functions split far  away into separate files, whereas they are only called 
once in the entire stack. This is not only cosmetic: when loaded, duplicate code 
consumes extra memory, which is a precious resource in kernel-space.

- Header declarations of all modules, that are gathered in a single huge file, instead 
of being clearly organized

- Lack of refinement in handling: for example, when parsing packet headers from 
the network,  unknown options cause the entire packet to be rejected instead of 
being silently ignored.

- An identified, documented, and yet uncorrected bug that may crash the system, 
causing what is commonly known as a “Blue Screen of Death”

Some of these points may be details, but in overall, they constitute a disappointment in 
what should be professional-grade software.
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3. Code c  omplexity  

Another problem that I encountered is that the internal workings of the stack seem 
terribly  complicated.  As  an  example,  only for  routing  information  needed  to  operate  the 
protocol, the stack maintains no less than six tables:

- a Neighbor Cache: similar in function to an ARP cache, tracks the state of physical 
neighbors and operate mappings between virtual and physical addresses of next 
hops

- a Node Table: represents individual nodes on the ring, actual purpose still vague to 
me

- the Route Table: holds routing information, toward endpoints in the Node Table, 
through next hops in the Neighbor Cache

- a Tear Down Cache:  used when sending Tear Down messages to remove stale 
routing information from the network

- a Probe List: used for metric probes
- a Zero List: used for repairing the ring after a partition

Entries in those tables hold references, with reference counts, to each other, have their 
own spin locks, their own timers and “housekeeping” periodic functions, and state changes of 
entries in one table triggers updates of related entries in other tables. There is no overview 
documentation describing the role and interactions of all these tables, and it is not easy for a 
newcomer to understand them by reading the code.

To be honest, part of the complexity also comes from the kernel context of the driver. 
The stack is not running by itself as a process, but called through kernel threads, hence the 
need for reference counts and numerous call-back functions, for example to free memory after 
other layers of the kernel be done with it. Unfortunately, part of the complexity is also due to 
the way that the implementation was written: some functions are filled with more than 500 
lines of code of raw complicated business logic. This is plain bad coding practice (and of 
course hardly understandable).

4. Interoperability   concerns  

The reference implementation is  a  Windows XP driver,  meant  to  run only on x86 
hardware  architectures.  Yet,  one  may expect  that  the  network  protocol  that  it  defines  be 
interoperable with other stacks, on other operating systems and architectures. And indeed, as 
working on  a  GNU/Linux port  of  this  stack,  which  could  potentially  be run  on a  lot  of 
different hardware architectures, portability was an important concern for me. But in fact, 
unfortunately, the original implementation does not really respect the constraints which would 
make this possible. The two main points are endianness and alignment.

Endianness is the way to represent values that span over several bytes of memory, by 
ordering those bytes one way or the other. The first memory byte can hold the value of either 
the most significant byte, or the least significant byte. For example, a 4-byte integer value of 
0xf f000000 (approximately 4 billions) will be represented in memory as  0xff,  0x00,  0x00, 
0x00 on big-endian architectures, and as 0x00, 0x00, 0x00, 0xff on little-endian architectures. 
The x86 architecture is little-endian; PowerPC or SPARC are big-endian. For different hosts 
with different architectures to interoperate the same network protocols, values that spans over 
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several bytes, typically 2 or 4, in the fields of protocol headers are by convention always 
converted the big-endian byte-order, also known as the network byte-order, before being sent 
on the wire.

0x 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 Demux Code 16-byte Message Authentication Code

1 (MAC) 16-byte AES block

2 Source Address Destination Address

3 Origin Address Frame Seq. # HL Opt len

4

…

VRR Options
…

Next H. Payload (IP Packet) …

A VRR header

Sadly, the reference implementation fails to do this. Some VRR header fields, like the 
4-byte  frame sequence number, are indeed byte-swapped to the network byte-order.  Some 
others, like the 2-byte header length, are not, and are sent on the network in the little-endian 
byte-order. All VRR options in the headers are copied from the memory to the network buffer 
in  a  raw  manner,  and  not  processed  for  byte-swapping  at  all.  So  to  speak,  maintaining 
interoperability with the original  stack with portable software would require at  least  ugly 
hacks.

The other problem is alignment. Again, when accessing values that span over several 
bytes, the memory address of this value is expected to be a multiple of its length: for example, 
2-byte fields should begin on pair addresses, 4-byte fields should begin on addresses that are 
multiple of 4… Generally, access to misaligned values causes at best performance losses, and 
may cause real issues and crashes on some architectures, or even not be supported at all. For 
this reason, header fields of popular networking protocols are aligned in a right way.

On x86 architectures, alignment is not a requirement; indeed fields in the VRR header 
are not aligned, which causes performance losses and portability problems.

Moreover,  when  directly  porting  the  misaligned  VRR  structs  in  the  source  code, 
compiling them with the popular GCC compiler produces a result that is different from the 
behavior of the original binaries. The reason is that by default GCC adds padding between 
unaligned  fields  to  restore  alignment.  However,  there  is  no  indication  of  this  potential 
difference in the original code, and indeed, I had believed for some time that the behavior of 
the original stack was to send padded VRR headers on the network. A close examination of 
some header length checks eventually hinted me at the contrary. At that time, I decided to 
more deeply consider the structure of the VRR headers.
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5. Header   analysis  

The VRR protocol uses an Ethertype assigned to Microsoft, who have been using it for 
several other different protocols. A striking fact about the VRR header is that it begins with a 
4-byte demultiplexing code, to differentiate VRR from those others protocols using the same 
Ethertype. This can only let the current header be considered as somehow tentative, and not 
ready for production. Still, a number of points could already be improved.

The  VRR  header  contains  a  4-byte  frame  sequence  number.  Typically,  sequence 
numbers are used for reliability, to acknowledge or retransmit packets, or for other ordering 
and fragmentation purposes. VRR provides none of this: in fact, VRR does provide some 
reliability for options in its headers, but uses a separate acknowledgement mechanism for this. 
According to my understanding of the code and the  grep tool,  this  field is  actually used 
nowhere in the stack, and could be removed from the headers, along with the pieces of code 
generating these unique sequence numbers.

Furthermore,  a  VRR  header  contains  three  addresses:  the  destination  address,  the 
source address of the node that generated the packet, called origin address, and a per-hop 
source address field, which contains the address of the last node that forwarded the packet. 
VRR does  not  piggyback control  options  on  data  packets,  but  transmits  several  possibly 
unrelated  options  at  the  same  time  on  dedicated  option  packets.  Option  packets  are  not 
forwarded; instead individual options are processed and resent if  needed on a hop-by-hop 
basis. Thus, data packets do not need the per-hop source address, and option packets do not 
need an extra origin address since they are always one-hop only. Actually, options usually 
include  their  own  redundant  source  address  information.  For  these  reasons,  two  source 
addresses fields are not needed, and one of them could be removed.

A problem already identified in the original code is the length of the length field in 
VRR options. Every option begins with a 1-byte type field, followed by a 2-byte length field, 
the problem being that 1 byte can only represent lengths up to 255 bytes, which is not enough 
for some options that may want to include numerous addresses, and would waste space with 
respect to the usual 1500-byte MTU. The same goes for the 2-byte header length field in the 
static header. A common solution to this, used in IP and IPv6 headers, is to count the length in 
units of 4 or 8 bytes. This makes all the more sense when options are anyway arranged to 
respect alignment constraints. A 1-byte length field counting lengths in units of 8 bytes can 
represent lengths up to 2040 bytes, which is greater than 1500 bytes, and is coherent with 64-
bit option alignment.

The VRR header and original stack also provide both end-to-end encryption of the 
VRR payload and hop-by-hop integrity verification, through two dedicated fields. However, 
when encryption is disabled, this space is wasted. It could be a good idea to make these fields 
optional, and to support choice between several encryption algorithms and different key sizes.

Moreover, since option packets and data packets are separate cases, the header can be 
adapted to each case to remove useless fields. Data packets need no header length field, since 
they carry no options. Option packets have no payload, and do not use encryption; they also 
are one-hop only, and do not need the hop count field.
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Here are a few ideas for new components that could be added to the VRR header:

- a version field
- a flags field, including an “option/data packet” flag, and possibly flags to toggle 

integrity  verification  and  encryption  in  the  case  of  fixed  algorithms  and  key 
lengths

- alternatively,  a pair  of algorithm-key length fields for integrity and encryption: 
such a pair can fit in a single byte, with a choice of 16 algorithms and key lengths 
from 8 to 128 bytes

- for data packets, a 2-byte payload length field, which is somehow missing in the 
original VRR header

- a  next  header  field.  The  reference  implementation  exports  the  VRR  network 
transparently as an Ethernet-like device, and uses 6-byte virtual addresses for VRR 
nodes, compatible with classic Ethernet addresses; then it mangle Ethernet frames 
and encapsulates them in VRR packets, the Ethertype field being considered as 
part  of  the  payload and encrypted  with it.  Instead  of  that,  when encryption  is 
disabled, the Ethertype could be moved to the VRR header, to respect the original 
alignment  of  the payload.  Or,  this  next  header  field could be used in different 
implementations to directly run transport protocols on top of VRR.

This analysis shows that instead of the original 61-byte VRR header, a minimal VRR 
header without integrity or encryption could easily fit in 16 bytes for option packets, and 16 
or 20 bytes for data packets, while respecting alignment constraints: indeed, there is truly 
room for improvement.

After all  these considerations,  and along with the fact  that  implementing multicast 
extensions would break compatibility with the original stack, I came to the conclusion that in 
order to provide a decent GNU/Linux VRR stack, in the future it would be better to drop this 
compatibility,  and  instead  work  on  a  selected  basis  of  good  parts  of  the  original 
implementation.

III. A port to GNU/Linux  

1. Main design orientations  

When porting this Windows XP kernel module to Linux, one of the first questions was 
whether  it  should be ported as a part  of the Linux kernel,  or  as a user-space application 
written for Linux. The two main arguments are:

- the ease of development in user-space, compared to kernel-space
- from a  licensing  point  of  view,  the  clear  incompatibility  between  the  non-free 

MSR-SSLA of the VRR driver and the GPL of the Linux
a  port  could  never  be  integrated  and  maintained  as  part  of  the  official 
kernel
a user-space application is much more convenient than an external kernel 
module for administrators and users
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Thus, I decided to port the VRR stack as a user-space application.

The two main tools that I used to port such a networking stack to user-space are the 
universal TUN/TAP device driver, and the packet socket.

The  TUN/TAP driver  is  a  kernel  module  whose  purpose  is  to  connect  a  virtual 
networking device to a user-space process: in the VRR case, it can register an Ethernet-like 
device, and relay transmitted and received Ethernet frames to and from the VRR process, 
through  reads  and  writes  on  a  file  descriptor.  It  is  totally  suited  to  the  needs  of  this 
implementation of VRR, which are to transparently export an overlay link layer to the normal 
networking stacks.

On the other side, the AF_PACKET  socket family allows a process to send and receive 
raw Ethernet frames. It can be used to build and send VRR packets directly on top of the 
physical link layer, and can be bound to the specific Ethertype used by VRR, so that it will 
only receive frames containing VRR packets.  Once again,  it  is exactly what is  needed to 
operate a networking protocol in user-space.

2. Port steps  

Using these two tools, my first task was to port the network interfacing part of the 
VRR stack. The original Windows XP driver is embedded between two layers of the NDIS 
framework,  or  Network  Driver  Interface  Specification,  which  is  a  key component  of  the 
Windows networking stack. I replaced all this code by reads and writes on a TUN/TAP file 
handle and socket API system calls, converting the code to the use of Ethernet and IP header 
definitions provided by the GNU C Library.

The second main structural difference is that the stack ported as a user-space process, 
instead  of  being run  from kernel  threads,  is  to  start  and run  by itself,  by spawning  and 
managing its own threads. To do so, I used the popular POSIX thread library, also known as 
pthread library in short.

Then, I began porting internal business logic of the VRR stack. This is a tedious work, 
especially in front of the complexity and the interaction of the different parts of the code. 
Porting business logic includes, most of the time:

- converting routine calls like Rt lCopyMemory  to memcpy
- replacing kernel spin locks by pthread mutexes
- converting Windows kernel time representation to system calls like gettimeofday 

and GNU C Library timer functions

In the mean time, I tried to add some basic UNIX-friendly build system. I was starting 
from  scratch,  as  the  source  code  was  likely  only  meant  to  be  built  using  a  Windows 
Development Kit, and at first would not compile at all. I wrote an approximate Makefile, that 
successfully provides the basic functionality to build the VRR binary by running the  make 
command. Given the fact that all the headers where originally gathered in a single, huge file, I 
also partially reorganized them, but this area needs a serious clean-up.
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One  last  important  change  from the  original  implementation  is  the  administration 
interface. As a kernel driver, the original VRR stack can be accessed using classic IOCTLs, 
and also through an original API based on intercepting packets send to magic addresses. I 
have not worked at all on this area. To me, the most natural way would be to write some kind 
of Command Line Interface, communicating with the VRR process through a local socket.

3. Current state of the port  

Until now, I have successfully ported parts of the VRR stack, and produced a working 
sample application. So far, the functionalities that are ported are:

- network interaction, packet parsing and IPv4 and IPv6 helpers
- partial route table, neighbor cache and node table support
- route table lookup and packet forwarding
- broadcasting of periodic Hello messages
- initialization of the stack, and spawning of the different threads

I also implemented parts of the multicast extensions that I designed:

- partial multicast forwarding table support
- sample processing of Multicast Tree messages
- multicast forwarding

These functionalities are working properly, and I have successfully achieved one-hop 
transmission over a VRR network of:

- sample UDP datagrams over IPv4 (by manually populating the ARP cache)
- exchanged IPv6 Neighbor  Solicitations and Advertisements,  and ICMPv6 Echo 

Requests and Echo Replies (commonly known as “ping”)
- a  160  kbps  MPEG  multicast  stream,  smoothly  transmitted  in  UDP  over  IP 

multicast, using VRR multicast

IV. Personal   experience  

From a personal point of view, working on VRR during all this time has been quite 
interesting, and rewarding.

First, this has been an occasion to face a concrete case of network protocol design, and 
apply the ideas that I have been studying in class. Moreover, the study of an atypical network 
protocol  is  enriching,  as  it  brought  me  a  view  different  from  classic  approaches  on 
networking.

Then, porting code was a very good opportunity for me to learn the C programming 
language.  Indeed,  when I  arrived  in  UCLA,  I  had  barely any experience  with  C.  It  also 
allowed me to broaden my knowledge of Linux networking and programming.
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On a more practical note, it is a good experience to have been able to assess by myself 
the quality of source code produced by a software leader like Microsoft, whose products are 
usually closed-source, and preceded by their reputation.

Conclusion

I consider my work on VRR during this year in UCLA as a very good experience. It 
allowed me to tackle at the same time both design and implementation issues, in my main 
field of interest: networking. At the very least, my work resulted in interesting design ideas 
and directions. The VRR protocol has some interesting, strong features, but sometimes also 
goes into too much complication, and could use simpler, more straightforward, more robust 
schemes. It appears to me that the reference implementation was released more as a proof of 
concept than production software, and could now be greatly improved with more work and 
efforts. Though my eventual concrete production is less than what I would have expected, I 
value much the understanding and assessment results that I have reached in the process.
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