
Pierre Ynard
July 2007

VRR: a study of design
and implementation

M.S. Comprehensive
UCLA 2006-2007

1

Contents

Contents..2
Introduction...3
I.Protocol design...3

1.Main features..3
2.Multicast extensions...5

II.The Microsoft Research reference VRR implementation...6
1.Overview..6
2.Lack of clean-ups...7
3.Code complexity..8
4.Interoperability concerns..8
5.Header analysis..10

III.A port to GNU/Linux...11
1.Main design orientations..11
2.Port steps..12
3.Current state of the port...13

IV.Personal experience..13
Conclusion..14
References...14

2

Introduction

VRR, or Virtual Ring Routing, is a network routing protocol with a fresh design. It is
inspired by overlay routing algorithms using Distributed Hash Tables, but instead of being
built at the application layer, it is a routing protocol implemented directly on top of the link
layer. VRR provides both traditional end-to-end routing, and DHT key-access functionalities.
It performs well across a wide range of network environments and workloads, but is
especially intended for routing in mesh wireless dynamic ad hoc networks, or disaster relief
networks and such: indeed, it is scalable, robust, and does not need external setup servers.

VRR has been designed and developed in collaboration with the Microsoft Research
team, and its reference implementation has been released in September 2006, for the Windows
XP operating system. It is distributed through a shared source agreement. The Network
Research Lab in UCLA has been experimenting in VANETs, and they consider using VRR on
virtualized environments onboard cars. As a term project in the Fall Quarter, I was initially
given the task of working on a port of this code to the GNU/Linux environment [3].

Since then, I have gone on further working on VRR, on design and implementation
issues. In particular, as a term project in the Winter Quarter, I designed multicast extensions to
the VRR protocol [4]. This document summarizes and presents a review of all my work, as a
M.S. Comprehensive report.

I. Protocol design

1. Main features

After having worked for some time with this protocol, it appears to me that the most
striking features of VRR are:

- the distribution of routing information over the network, in the face of the
requirements of routing

- symmetric failure detection, and more generally,
- the hard-state of the protocol, and the fact that it does not flood the network to

acquire routing information

In VRR, each node is identified by a so-called virtual address, and these addresses are
sorted on a virtual ring: identifiers are called virtual in distinction from the physical topology,
of which they are independent. Each node holds some partial routing information, which
comprises routes toward several endpoints. When forwarding a packet, the node uses the next
hop of the route whose endpoint’s address is numerically the closest to the destination
address. Depending on the routing information that the forwarding node holds, the next hop
may not be the most accurate with respect to the physical topology.

3

However, in order to achieve routing, each node is responsible for maintaining routing
information to a set of a few nodes which are numerically closest on the virtual ring: this set
of virtual neighbors is called the virtual set. Through one-time exchanges of Setup messages
with their virtual set, virtual neighbors set up routing information all along the paths between
them. This information is torn down when a failure occurs, and set up again by the virtual
neighbors. Thus, by routing according to the virtual ring topology, VRR can rely on routing
information within virtual sets, truly distributed over the ring: this is a key to the scalability of
VRR.

One may imagine that, in order to detect failures, virtual neighbors exchange some
kind of end-to-end heartbeat messages: this is not the case, as the protocol is essentially hard-
state, which means that routing information is not periodically refreshed, and then passively
removed when its lifetime expires, but instead, once acquired, is kept valid until an active
contrary update is received. In such a distributed environment, the main point where
consistency can be achieved is the local environment of a node. VRR nodes broadcast Hello
beacons, to detect and track the state of their neighbors in the physical topology. These Hello
messages are coupled to state machines: the state transitions ensures that if a node detects that
a link with one of its neighbors is failing, both sides will detect and report the failure, and
consistency will be preserved. Routing information establishing paths between two virtual
neighbors that pass by the failing link can then be removed, by forwarding Tear Down
messages along the paths, toward both endpoints, to report the failure in a reliable way.

State transitions when a Hello message is received

Distributed information and hard-state are indeed a quite beneficial combination. A
third element, depending on the context of the use of VRR, can be added.

VRR is not really intended for global routing, like the Internet Protocol, but rather for
use within an organization, with a pre-arranged configuration. Moreover, the principles of
VRR are to use neither flooding of information, nor external reference servers. In this
situation, to retrieve some piece of information on a VRR network, user-level applications can
be arranged to take advantage of Dynamic Hash Table functionalities, inherently supported by
the virtual ring structure of VRR. With the use of pre-deployed DHT applications on the
nodes composing the network, VRR can be extended to further distribute user-level
information on the ring.

4

As addressed in [2], this scheme can be used to operate autoconfiguration protocols
like DHCP, or resolution protocols like DNS or ARP for IPv4: as said before, it allows VRR
networks to run in the absence of a support infrastructure, for example in a disaster relief
scenario, and without the poor performance implied by broadcasting requests through the
network.

Indeed, the reference implementation of the VRR stack provides applications with
extra mechanisms to easily access DHTs on the VRR network, and is shipped with such
applications implementing ARP, DNS and DHCP. Though VRR really is a network protocol,
standing directly on top of the link layer, the VRR network is exported as an overlay link
layer, accessible through an Ethernet-like device, on which IPv4 and IPv6 stacks can be run
transparently. As the idea behind VRR is never to broadcast a request through the ring, in
order to mimic the behavior of a link layer, the VRR driver will in particular intercept
broadcast ARP requests, and redirect them to user-space for DHT applications to handle them,
as mentioned above. This means that VRR does not really need to support real broadcast or
multicast to operate in normal conditions, and in fact, it does not support them at all.

However, this is still a limitation. In cases where broadcast is used to query a unique,
yet unknown, node on the network, it can be replaced by DHT applications. But when the
purpose is to transmit the same data to several or all nodes at the same time in an efficient
way, broadcast and multicast are still missing. This problem has been the motivation of my
work on the design of broadcast and multicast extensions to VRR.

2. Multicast extensions

When working on these multicast extensions, I essentially tried to conform to the
design goals and decisions of the existing VRR, and take advantage of its particular features,
to produce a scheme that was consistent with the original protocol: something scalable, hard-
state, and that did not require flooding of information.

Among the classic ways of doing multicast, one approach was particularly suited to
this case: like in PIM [5], to use a rendezvous point (RVP), and then rely on existing unicast
routing. Indeed, for streaming sources and group members to contact each other, they need
either to flood the network toward each other, or to meet at a RVP: on VRR, the DHT
functionalities can easily be taken advantage of to implement RVPs and store group
membership information in a distributed way. Then, as for multicast forwarding, each node
holds only partial routing information, which is not enough to coordinate efficient
multicasting by itself; however, existing unicast VRR routes can be used to forward messages,
for example from a member toward a source, and set up a forwarding tree along the path.

This is a two-step process, where first the RVP is contacted to notify it and fetch
existing group information, and then messages are sent to build a distribution tree. For
scalability reasons, it is better if both endpoint types, that is, both sources and members, can
initiate this process. Thus, I designed two additional VRR option types with several subtypes
corresponding to those messages:

1. Multicast Membership messages
Register, Members and Withdraw messages between a source and a RVP
Join, Sources and Leave messages between a member and a RVP

5

2. Multicast Tree messages
Seed and Fell messages from a source toward members
Branch and Prune message from members toward the source

Subsequently, for each multicast group and source pair, each node holds an entry in a
multicast forwarding table, which consists only of a list of next hops to which packets must be
forwarded: since the information kept at each node is relatively small, the scheme is scalable.
This information is kept in hard-state: existing symmetric failure detection is used to detect
failures, and repair the tree.

I found that this scheme is not exempt of synchronization issues. Essentially,
consistency can be achieved only at two points: at the RVP, and in the local environment of
each node. The RVP can easily be used as a reference point, where membership information is
kept in a coherent state. In fact, the only serious problem with possible race conditions is
when two neighbors along a tree exchange opposite messages at the same time: a branch of
the tree could be orphaned by its parent without knowing it, and fail to receive packets. This
problem can be solved through the use of sequence numbers for Multicast Tree messages, to
acknowledge or retransmit, and order those messages, and then apply a few simple
synchronization rules to eliminate harmful race conditions.

To complete the review of this design, I treated the broadcast case as a special case of
multicast, where all nodes are implicitly members of the group. In the end, this scheme is
interesting and seems feasible, though at the moment it is only partially implemented, and
neither really tested nor evaluated.

II. The Microsoft Research reference VRR implementation

During my work on VRR, my basis was essentially the code source itself of the
reference implementation from Microsoft Research. Thus, I have come to some observations
about it that I will expose here.

1. Overview

This implementation was released in September 2006, under the version number
Release 1.0. This is an experimental kernel-mode driver for Windows XP. The release
contains the source code and binaries of the driver itself, and also of C# user-level libraries
and applications. It is distributed under a Microsoft Research Shared Source License
Agreement (MSR-SSLA). The key points of this agreement are:

- A license for non-commercial use
- Distribution of derivative works is authorized only under the same terms.
- Upon distribution of derivative works, Microsoft is granted back a free non-

exclusive full license on them.

6

The driver code itself amounts to approximately 30000 lines of code, written in C. It is
shipped with installation and start-up guides, but no real general driver overview
documentation, such as a developer README file. The two VRR papers [1] and [2] are the
only extra documents helping to understand the driver.

Fortunately, the code itself is quite well commented. At first, I was quite pleased by
the external appearance of the code, which looked well-written, clearly commented and using
good coding styles. But after working more in depth with the internals of the stack, I became
quite disappointed by its quality. There are a number of points on which great improvements
could be made: though it is experimental, the code does not meet the quality standards that I
would have expected for a release, and, in my opinion, would rather qualify as pre-release
stage code.

2. Lack of clean-ups

Indeed, when reading through the code, it is not rare to come across comments like
“TODO: clean this up” or “TODO: do this in a better way.” Also, obviously, the stack makes
intensive re-use of code from the Microsoft Research Mesh Connectivity Layer, and
especially the Link-Quality Source Routing (LQSR) stack: in itself, this code re-use is not a
bad thing, but it contributes to explain the state of the code. The most pervasive example is
the struct used to internally represent a VRR packet: it is called SRPacket, for Source Routed
Packet, whereas VRR has really nothing to do with source routing. Beyond simple naming
questions, other examples of things that could have been cleaned up before the release are:

- Flags describing VRR node states, that are defined in the headers but never used in
the code

- Variables declared in functions, but never used, that are easily caught by turning on
compiler warnings

- Old LQSR definitions, still present in the code, and marked as “to be cleared”
- Not only debug output, which is fine, but debug logic still present in the code
- Duplicate code, sometimes nearly whole functions; at other times, on the opposite,

helper functions split far away into separate files, whereas they are only called
once in the entire stack. This is not only cosmetic: when loaded, duplicate code
consumes extra memory, which is a precious resource in kernel-space.

- Header declarations of all modules, that are gathered in a single huge file, instead
of being clearly organized

- Lack of refinement in handling: for example, when parsing packet headers from
the network, unknown options cause the entire packet to be rejected instead of
being silently ignored.

- An identified, documented, and yet uncorrected bug that may crash the system,
causing what is commonly known as a “Blue Screen of Death”

Some of these points may be details, but in overall, they constitute a disappointment in
what should be professional-grade software.

7

3. Code c omplexity

Another problem that I encountered is that the internal workings of the stack seem
terribly complicated. As an example, only for routing information needed to operate the
protocol, the stack maintains no less than six tables:

- a Neighbor Cache: similar in function to an ARP cache, tracks the state of physical
neighbors and operate mappings between virtual and physical addresses of next
hops

- a Node Table: represents individual nodes on the ring, actual purpose still vague to
me

- the Route Table: holds routing information, toward endpoints in the Node Table,
through next hops in the Neighbor Cache

- a Tear Down Cache: used when sending Tear Down messages to remove stale
routing information from the network

- a Probe List: used for metric probes
- a Zero List: used for repairing the ring after a partition

Entries in those tables hold references, with reference counts, to each other, have their
own spin locks, their own timers and “housekeeping” periodic functions, and state changes of
entries in one table triggers updates of related entries in other tables. There is no overview
documentation describing the role and interactions of all these tables, and it is not easy for a
newcomer to understand them by reading the code.

To be honest, part of the complexity also comes from the kernel context of the driver.
The stack is not running by itself as a process, but called through kernel threads, hence the
need for reference counts and numerous call-back functions, for example to free memory after
other layers of the kernel be done with it. Unfortunately, part of the complexity is also due to
the way that the implementation was written: some functions are filled with more than 500
lines of code of raw complicated business logic. This is plain bad coding practice (and of
course hardly understandable).

4. Interoperability concerns

The reference implementation is a Windows XP driver, meant to run only on x86
hardware architectures. Yet, one may expect that the network protocol that it defines be
interoperable with other stacks, on other operating systems and architectures. And indeed, as
working on a GNU/Linux port of this stack, which could potentially be run on a lot of
different hardware architectures, portability was an important concern for me. But in fact,
unfortunately, the original implementation does not really respect the constraints which would
make this possible. The two main points are endianness and alignment.

Endianness is the way to represent values that span over several bytes of memory, by
ordering those bytes one way or the other. The first memory byte can hold the value of either
the most significant byte, or the least significant byte. For example, a 4-byte integer value of
0xf f000000 (approximately 4 billions) will be represented in memory as 0xff, 0x00, 0x00,
0x00 on big-endian architectures, and as 0x00, 0x00, 0x00, 0xff on little-endian architectures.
The x86 architecture is little-endian; PowerPC or SPARC are big-endian. For different hosts
with different architectures to interoperate the same network protocols, values that spans over

8

several bytes, typically 2 or 4, in the fields of protocol headers are by convention always
converted the big-endian byte-order, also known as the network byte-order, before being sent
on the wire.

0x 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 Demux Code 16-byte Message Authentication Code

1 (MAC) 16-byte AES block

2 Source Address Destination Address

3 Origin Address Frame Seq. # HL Opt len

4

…

VRR Options
…

Next H. Payload (IP Packet) …

A VRR header

Sadly, the reference implementation fails to do this. Some VRR header fields, like the
4-byte frame sequence number, are indeed byte-swapped to the network byte-order. Some
others, like the 2-byte header length, are not, and are sent on the network in the little-endian
byte-order. All VRR options in the headers are copied from the memory to the network buffer
in a raw manner, and not processed for byte-swapping at all. So to speak, maintaining
interoperability with the original stack with portable software would require at least ugly
hacks.

The other problem is alignment. Again, when accessing values that span over several
bytes, the memory address of this value is expected to be a multiple of its length: for example,
2-byte fields should begin on pair addresses, 4-byte fields should begin on addresses that are
multiple of 4… Generally, access to misaligned values causes at best performance losses, and
may cause real issues and crashes on some architectures, or even not be supported at all. For
this reason, header fields of popular networking protocols are aligned in a right way.

On x86 architectures, alignment is not a requirement; indeed fields in the VRR header
are not aligned, which causes performance losses and portability problems.

Moreover, when directly porting the misaligned VRR structs in the source code,
compiling them with the popular GCC compiler produces a result that is different from the
behavior of the original binaries. The reason is that by default GCC adds padding between
unaligned fields to restore alignment. However, there is no indication of this potential
difference in the original code, and indeed, I had believed for some time that the behavior of
the original stack was to send padded VRR headers on the network. A close examination of
some header length checks eventually hinted me at the contrary. At that time, I decided to
more deeply consider the structure of the VRR headers.

9

5. Header analysis

The VRR protocol uses an Ethertype assigned to Microsoft, who have been using it for
several other different protocols. A striking fact about the VRR header is that it begins with a
4-byte demultiplexing code, to differentiate VRR from those others protocols using the same
Ethertype. This can only let the current header be considered as somehow tentative, and not
ready for production. Still, a number of points could already be improved.

The VRR header contains a 4-byte frame sequence number. Typically, sequence
numbers are used for reliability, to acknowledge or retransmit packets, or for other ordering
and fragmentation purposes. VRR provides none of this: in fact, VRR does provide some
reliability for options in its headers, but uses a separate acknowledgement mechanism for this.
According to my understanding of the code and the grep tool, this field is actually used
nowhere in the stack, and could be removed from the headers, along with the pieces of code
generating these unique sequence numbers.

Furthermore, a VRR header contains three addresses: the destination address, the
source address of the node that generated the packet, called origin address, and a per-hop
source address field, which contains the address of the last node that forwarded the packet.
VRR does not piggyback control options on data packets, but transmits several possibly
unrelated options at the same time on dedicated option packets. Option packets are not
forwarded; instead individual options are processed and resent if needed on a hop-by-hop
basis. Thus, data packets do not need the per-hop source address, and option packets do not
need an extra origin address since they are always one-hop only. Actually, options usually
include their own redundant source address information. For these reasons, two source
addresses fields are not needed, and one of them could be removed.

A problem already identified in the original code is the length of the length field in
VRR options. Every option begins with a 1-byte type field, followed by a 2-byte length field,
the problem being that 1 byte can only represent lengths up to 255 bytes, which is not enough
for some options that may want to include numerous addresses, and would waste space with
respect to the usual 1500-byte MTU. The same goes for the 2-byte header length field in the
static header. A common solution to this, used in IP and IPv6 headers, is to count the length in
units of 4 or 8 bytes. This makes all the more sense when options are anyway arranged to
respect alignment constraints. A 1-byte length field counting lengths in units of 8 bytes can
represent lengths up to 2040 bytes, which is greater than 1500 bytes, and is coherent with 64-
bit option alignment.

The VRR header and original stack also provide both end-to-end encryption of the
VRR payload and hop-by-hop integrity verification, through two dedicated fields. However,
when encryption is disabled, this space is wasted. It could be a good idea to make these fields
optional, and to support choice between several encryption algorithms and different key sizes.

Moreover, since option packets and data packets are separate cases, the header can be
adapted to each case to remove useless fields. Data packets need no header length field, since
they carry no options. Option packets have no payload, and do not use encryption; they also
are one-hop only, and do not need the hop count field.

10

Here are a few ideas for new components that could be added to the VRR header:

- a version field
- a flags field, including an “option/data packet” flag, and possibly flags to toggle

integrity verification and encryption in the case of fixed algorithms and key
lengths

- alternatively, a pair of algorithm-key length fields for integrity and encryption:
such a pair can fit in a single byte, with a choice of 16 algorithms and key lengths
from 8 to 128 bytes

- for data packets, a 2-byte payload length field, which is somehow missing in the
original VRR header

- a next header field. The reference implementation exports the VRR network
transparently as an Ethernet-like device, and uses 6-byte virtual addresses for VRR
nodes, compatible with classic Ethernet addresses; then it mangle Ethernet frames
and encapsulates them in VRR packets, the Ethertype field being considered as
part of the payload and encrypted with it. Instead of that, when encryption is
disabled, the Ethertype could be moved to the VRR header, to respect the original
alignment of the payload. Or, this next header field could be used in different
implementations to directly run transport protocols on top of VRR.

This analysis shows that instead of the original 61-byte VRR header, a minimal VRR
header without integrity or encryption could easily fit in 16 bytes for option packets, and 16
or 20 bytes for data packets, while respecting alignment constraints: indeed, there is truly
room for improvement.

After all these considerations, and along with the fact that implementing multicast
extensions would break compatibility with the original stack, I came to the conclusion that in
order to provide a decent GNU/Linux VRR stack, in the future it would be better to drop this
compatibility, and instead work on a selected basis of good parts of the original
implementation.

III. A port to GNU/Linux

1. Main design orientations

When porting this Windows XP kernel module to Linux, one of the first questions was
whether it should be ported as a part of the Linux kernel, or as a user-space application
written for Linux. The two main arguments are:

- the ease of development in user-space, compared to kernel-space
- from a licensing point of view, the clear incompatibility between the non-free

MSR-SSLA of the VRR driver and the GPL of the Linux
a port could never be integrated and maintained as part of the official
kernel
a user-space application is much more convenient than an external kernel
module for administrators and users

11

Thus, I decided to port the VRR stack as a user-space application.

The two main tools that I used to port such a networking stack to user-space are the
universal TUN/TAP device driver, and the packet socket.

The TUN/TAP driver is a kernel module whose purpose is to connect a virtual
networking device to a user-space process: in the VRR case, it can register an Ethernet-like
device, and relay transmitted and received Ethernet frames to and from the VRR process,
through reads and writes on a file descriptor. It is totally suited to the needs of this
implementation of VRR, which are to transparently export an overlay link layer to the normal
networking stacks.

On the other side, the AF_PACKET socket family allows a process to send and receive
raw Ethernet frames. It can be used to build and send VRR packets directly on top of the
physical link layer, and can be bound to the specific Ethertype used by VRR, so that it will
only receive frames containing VRR packets. Once again, it is exactly what is needed to
operate a networking protocol in user-space.

2. Port steps

Using these two tools, my first task was to port the network interfacing part of the
VRR stack. The original Windows XP driver is embedded between two layers of the NDIS
framework, or Network Driver Interface Specification, which is a key component of the
Windows networking stack. I replaced all this code by reads and writes on a TUN/TAP file
handle and socket API system calls, converting the code to the use of Ethernet and IP header
definitions provided by the GNU C Library.

The second main structural difference is that the stack ported as a user-space process,
instead of being run from kernel threads, is to start and run by itself, by spawning and
managing its own threads. To do so, I used the popular POSIX thread library, also known as
pthread library in short.

Then, I began porting internal business logic of the VRR stack. This is a tedious work,
especially in front of the complexity and the interaction of the different parts of the code.
Porting business logic includes, most of the time:

- converting routine calls like Rt lCopyMemory to memcpy
- replacing kernel spin locks by pthread mutexes
- converting Windows kernel time representation to system calls like gettimeofday

and GNU C Library timer functions

In the mean time, I tried to add some basic UNIX-friendly build system. I was starting
from scratch, as the source code was likely only meant to be built using a Windows
Development Kit, and at first would not compile at all. I wrote an approximate Makefile, that
successfully provides the basic functionality to build the VRR binary by running the make
command. Given the fact that all the headers where originally gathered in a single, huge file, I
also partially reorganized them, but this area needs a serious clean-up.

12

One last important change from the original implementation is the administration
interface. As a kernel driver, the original VRR stack can be accessed using classic IOCTLs,
and also through an original API based on intercepting packets send to magic addresses. I
have not worked at all on this area. To me, the most natural way would be to write some kind
of Command Line Interface, communicating with the VRR process through a local socket.

3. Current state of the port

Until now, I have successfully ported parts of the VRR stack, and produced a working
sample application. So far, the functionalities that are ported are:

- network interaction, packet parsing and IPv4 and IPv6 helpers
- partial route table, neighbor cache and node table support
- route table lookup and packet forwarding
- broadcasting of periodic Hello messages
- initialization of the stack, and spawning of the different threads

I also implemented parts of the multicast extensions that I designed:

- partial multicast forwarding table support
- sample processing of Multicast Tree messages
- multicast forwarding

These functionalities are working properly, and I have successfully achieved one-hop
transmission over a VRR network of:

- sample UDP datagrams over IPv4 (by manually populating the ARP cache)
- exchanged IPv6 Neighbor Solicitations and Advertisements, and ICMPv6 Echo

Requests and Echo Replies (commonly known as “ping”)
- a 160 kbps MPEG multicast stream, smoothly transmitted in UDP over IP

multicast, using VRR multicast

IV. Personal experience

From a personal point of view, working on VRR during all this time has been quite
interesting, and rewarding.

First, this has been an occasion to face a concrete case of network protocol design, and
apply the ideas that I have been studying in class. Moreover, the study of an atypical network
protocol is enriching, as it brought me a view different from classic approaches on
networking.

Then, porting code was a very good opportunity for me to learn the C programming
language. Indeed, when I arrived in UCLA, I had barely any experience with C. It also
allowed me to broaden my knowledge of Linux networking and programming.

13

On a more practical note, it is a good experience to have been able to assess by myself
the quality of source code produced by a software leader like Microsoft, whose products are
usually closed-source, and preceded by their reputation.

Conclusion

I consider my work on VRR during this year in UCLA as a very good experience. It
allowed me to tackle at the same time both design and implementation issues, in my main
field of interest: networking. At the very least, my work resulted in interesting design ideas
and directions. The VRR protocol has some interesting, strong features, but sometimes also
goes into too much complication, and could use simpler, more straightforward, more robust
schemes. It appears to me that the reference implementation was released more as a proof of
concept than production software, and could now be greatly improved with more work and
efforts. Though my eventual concrete production is less than what I would have expected, I
value much the understanding and assessment results that I have reached in the process.

References

[1] M. Caesar, M. Castro, E. Nightingale, G. O’Shea, A. Rowstron
Virtual Ring Routing: Network Routing Inspired by DHTs
SIGCOMM’06, September 2006

[2] M. Castro, G. O’Shea, A. Rowstron
Zero Servers With Zero Broadcasts
MobiShare’06, September 2006

[3] P. Ynard
Virtual Ring Routing, a Port to GNU/Linux
December 2006

[4] P. Ynard
Broadcasting and Multicasting on VRR
April 2007

[5] B. Fenner, M. Handley, H. Holbrook, I. Kouvelas
Protocol Independent Multicast – Sparse Mode (PIM-SM): Protocol Specification
(Revised)
RFC 4601, August 2006

14

	Contents
	Introduction
	I.Protocol design
	1.Main features
	2.Multicast extensions

	II.The Microsoft Research reference VRR implementation
	1.Overview
	2.Lack of clean-ups
	3.Code complexity
	4.Interoperability concerns
	5.Header analysis

	III.A port to GNU/Linux
	1.Main design orientations
	2.Port steps
	3.Current state of the port

	IV.Personal experience
	Conclusion
	References

